Date	Topic	Notes	Questions
1.	Chapter Summary	2,3	
2.	Fundamental Counting Principle	4-8	
3.	Permutations	9-13	
4.	Permutations	14-17	
5.	Combinations	18-22	
6.	Combinations	23-26	
7.	Pascal's triangle	27-30	
8.	Binomial Theorem	31-37	
9.	Binomial Theorem	38-42	
10.	Review		
11.	Review		
12.	TEST		

These Combinatorics NOTES Belong to:__

Please Read:

Some students find this chapter and the probabilities chapter hard. Their main complaint is that they are unsure about whether the question is a permutation question or a combination question. Find out what a permutation and combination is as soon as possible. It will make the ride much smoother. These concepts are defined on page 2.

IQ TEST:

Combination: How many ways can you choose 2 fingers from your left hand?

Permutation: How many ways can you tap the fingers of one hand on your desk?

	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	 	1 1 1 1 1
 	 	 	 / 	 	,	
	r 				1 1 1 1 1 1 1	

Record any questions that you find challenging.

2

Combinatorics Summary Page #1

1. The Fundamental Counting Principle.

• If one item can be selected in X ways, and for every way a second item can be selected in y ways, then the two items can be selected in XY ways.

2. Factorial Notation! \rightarrow 5! Is read 5 factorial.

1!	2!	3!	4!	5!	N!
1	1×2 = 2	$1 \times 2 \times 3 = 6$	$1 \times 2 \times 3 \times 4 = 24$	$1 \times 2 \times 3 \times 4 \times 5 = 120$	$1 \times 2 \times 3 \times \times (N-1) \times N$

Where is the ! button on my calculator? Press MATH, choose C PROB, select !, press enter.

IMPORTANT DEFINITION → **O!=1**

3. Permutations and Combinations

Permutation*: $_{n}P_{r} = \frac{n!}{(n-r)!}$	Combination*: ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$
 Placement/order matters Races with 1st, 2nd, 3rd Electing a president and vice president Arranging books on a shelf Arranging fruit in glass bowl Card games like Speed 	 Placement/order does not matter Races where top 3 advance Electing 2 co-presidents Throwing books in a garbage can with a lid. Place the fruit from the bowl in a blender Card games like poker
 Official Definition An ordered arrangement of distinct objects The number of permutations of n distinct objects taken r at a time 	 Official Definition An unordered arrangement of distinct objects The number of combinations of n distinct objects taken r at a time
Graphing Calculator Help ₅P2 5→ Math→Prob→ nPr→enter→2→enter 	Graphing Calculator Help ₅C2 5→ Math→Prob→ nCr→enter→2→enter

* n > 0 , r > 0 , n > r and both n and r are whole numbers.

4. Permutations Involving Identical Objects

The number of permutations of n objects of which there are a object	ts alike of one
kind, b alike of another kind, c alike of another kind, and so on is: $\frac{1}{a!b}$	<u>n!</u> p!c!

3

Combinatorics Summary Page #2

5. Pascal's Triangle

Compare ${}_{n}C_{r}$ in each row with the coefficients in the binomial expansions.							
οCο	Row 1	(x+y) ⁰	1				
$1C_0$ $1C_1$	Row2	(x+y) ¹	1x+1y				
$2C_0$ $2C_1$ $2C_2$	Row3	(x+y) ²	1x ² +2xy+1y ²				
$_{3}C_{0}$ $_{3}C_{1}$ $_{3}C_{2}$ $_{3}C_{3}$	Row4	(x+y) ³	1x ³ +3x ² y+3xy ² +1y ³				
$4C_0$ $4C_1$ $4C_2$ $4C_3$ $4C_4$	Row5	(x+y) ⁴	1x ⁴ +4x ³ y+6x ² y ² +4xy ³ +1y ⁴				
$5C_0 5C_1 5C_2 5C_3 5C_4 5C_5$	Row6	(x+y) ⁵	1x ⁵ +5x ⁴ y+10x ³ y ² +10x ² y ³ +5xy ⁴ +1y ⁵				
The r value of ${}_{n}C_{r}$ in each box is equal to the y exponent in each term.							

6. The Binomial Theorem

Expand (x + y)⁶ using the Binomial Theorem How many terms will there be? The coefficient of each term can be found using 6C0→6C6 X exponents start at 6 and decrease by 1 until it reaches 0 Y exponents start at 0 and increase by 1 until it reaches 6

• Each term is the product of the above

Ter	Term 1 Term 2		m 2	Term 3		Term 4		Term 5		Term 6		Term 7	
₆ C ₀	= 1	₆ C ₁	= 6	₆ C ₂	= 15	₆ C ₃	= 20	₆ C ₄	= 15	₆ C ₅	= 6	₆ C ₆	= 1
X ⁶	= X ⁶	X ⁵	= X ⁵	X ⁴	= X ⁴	X ³	= X ³	X ²	= X ²	X^1	= X ¹	X ⁰	= 1
γo	= 1	У1	= Y	У²	= Y ²	У³	= Υ ³	У ⁴	= Y ⁴	У ⁵	= Υ ⁵	У6	= Y ⁶
X^{6} + $6X^{5}Y$ + $15X^{4}Y^{2}$		+ 20 X ³ Y ³ +		+ 15 X ² Y ⁴		+ 62	X Y⁵	+	У ⁶				
	$(X+Y)^6 = X^6 + 6X^5Y + 15X^4Y^2 + 20X^3Y^3 + 15X^2Y^4 + 6XY^5 + Y^6$												

7. Use the formula to find a specific term in an expansion

Find the $(k+1)^{\text{th}}$ term $t_{k+1} = {}_{n}C_{k}X^{n-k}Y^{k}$ This formula is given on the provincial exam

8. Mixing all the ideas together \rightarrow see page 30-31

9. How do you do combinations questions with the words at least or at most?

4

Combinatorics Challenge Questions

(Challenge questions are designed to be completed in small groups and supported by the teacher.)

- A. How many ways can you choose 2 fingers from your left hand?
- B. How many ways can you tap the fingers of one hand on your desk?
- C. How many phone 7 digit-phone-numbers can exist in a city starting with 598?
- D. Theoretically speaking, how many phone numbers can exist in a ten-digit-BC-phone number with the area code 250?
- E. Considering restrictions, how many numbers do you think are actually possible with area code beginning with 250?

Problem Questions: Students should be given ample time to try the "Problem" questions before they seek help or are given an explanation by their teacher.

Problem #1: Stu Dent just bought 2 hats, 3 shirts, and 2 pairs of pants. How many different outfits are possible?

Fundamental Counting Principle

The Fundamental Counting Principle.

- If one item can be selected in X ways, and for every way a second item can be selected in y ways, then the two items can be selected in XY ways.
- See question 1 below.
- 1. Stu Dent just bought 2 hats, 3 shirts, and 2 pairs of pants. How many different outfits are possible?

2. Sam's Deli features 3 kinds of bread. They have 4 different kinds of meat and 2 different kinds of cheese. How many different sandwiches can be made?

Draw a tree diagram to solve. Use a formula.

2 digit numbers (09 is not a 2 digit number)

		_
 How many 2 digit numbers are possible? Solution: 	 How many odd 2 digit numbers are possible? 	5. How many 2 digit numbers can be created so that no number repeats?
• How many options for the 1 st digit are there?		
 How many options are there for the 2nd digit? 		
3 digit numbers (029 is not	a 3 digit number)	
6. How many 3 digit numbers are possible?	7. How many odd 3 digit numbers are possible?	8. How many 3 digit numbers exist where no # repeats?
1^{st} digit options X 2^{nd} digit options X 3^{rd} digit options		
	1 1	1 1

3 digit codes

- 9. How many different 3 digit codes can be made if the first digit has to be even, the second digit must be a vowel (y is not a vowel) and the last digit must be an x,y or z.
- 10. How many different 3 digit codes can be made if the first digit has to be between 5 and 9 inclusive, the second digit must be a single digit # and the last digit must be an M,A,T or H.
- 11. How many different 3 digit codes can be made if the first digit has to be a letter, the second digit must be an x or y and the last digit must be a number between 1-5 inclusive.

Problem #2: A true-false test has 3 questions.

- How many answer keys are possible? (Use a list and a tree diagram to answer this question)
- What is the probability of guessing every question right?

Draw a tree diagram or use a chart to organize your ideas.

14. A true-false test has 5 questions. How many answer keys are possible?	16. A true-false test has 8 questions. How many answer keys are possible?
32 15. P(100%)= 3.125%	17. P(100%)=
 A 5 question multiple choice test has options a, b, c, & d. How many answer keys are possible? 	 20. A 10 question multiple choice test has options a, b, c, d & e. How many answer keys are possible?
19. P (100%) =	21. P(100%)=
	 14. A true-false test has 5 questions. How many answer keys are possible? 32 15. P(100%)= 3.125% 18. A 5 question multiple choice test has options a, b, c, & d. How many answer keys are possible? 19. P(100%)=

Problem #3: The final score of a soccer game is 4-2. How many scores are possible at the start of the second half?

					15
22.	How many different ice cream sundaes can be made from 5 choices of ice cream and 3 choices of topping if only one flavor and one topping is selected for each sundae.	23.	How many different punches can be made from 3 choices of pop and 7 choices of juice if only one pop and one juice is selected for drink.	24.	The final score of a hockey game was 3-2. How many scores are possible after the 1 st period?
	15	1			Hint(List all possible scores for each team)

Problem #4: How many unique four letter arrangements can be made from the letters MATH?

- Before you begin, estimate the number of possibilities→_____
- Now find a strategy to find the exact number of solutions.

Factorial Notation

Answer from the previous page. (MATH has 24 unique arrangements) How many ways can you rearrange the following letters?

25. TSPRAY	26. LUVS	27. HIS	28. NOTES
Solution:			
6 letters to pick to be 1 st			
5 letters to pick to be 2 nd			
4 letters left to pick the 3 rd			
3 letters left to pick the 4 th			
2 letters left to pick the 5^{th}			
1 letter left to pick the 6 th			
6×5×4×3×2×1=720			

Introduction: Factorial notation. 4! Is read four factorial. Factorial notation is helpful in solving many types of problems.

Problem #5: Determine what ! means by finding the pattern.

Evaluate 1!.	Evaluate 2!.	Evaluate 3!.	Evaluate 4!.	Evaluate 5!.				
(Graphing Calculator)				1				
Press MATH, choose C				1				
PROB, select !, press				1				
enter.				1				
What does the ! mean in math?								

Problem #6: Do not evaluate. What does 4! mean?

29.	How many ways can 7 people finish a race?	30.	How many ways can a doctor arrange 8 appointments?	31.	How many ways can 9 people place in a race?	32.	How many ways can 6 different books be placed on a shelf?
						1	

The use of pictures is often helpful in visualizing the problem. Have fun.

33.	5 kids are crossing the street holding hands in a straight line. If their parents have to be on each end, how many arrangements of the family are possible?	34.	There are 10 different books on a bookshelf and 2 different bookends. How many different arrangements are possible?	35.	There are 3 boys and 2 girls. How many ways can they arrange themselves in a straight line if genders must alternate?
	*	1			

*Is your answer only half of the correct answer? Did you draw a picture?

Problem #7: Seven students were nominated for best overall math hairstyle. How many different ways can 1^{st} , 2^{nd} , 3^{rd} be awarded?

Permutations Involving Different Objects

Definition.

Permutation:
$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

Definition:

- An ordered arrangement of distinct objects
- The number of permutations of n distinct objects taken r at a time

Example. How many ways can Blair, Matt & Dave finish in a race? (BMD, BDM, ,MBD, MDB, DMB & DBM)

Placement/order matters

- ✤ Races with 1st, 2nd, 3rd
- Electing a president and vice president
- * Arranging books on a shelf
- ✤ Arranging fruit in glass bowl
- ✤ Card games like Speed

Problem #8: Evaluate ${}_{10}P_2 = {}_{5}P_3 = {}_{6}P_6 =$

 There are 7 people in a race. How many different ways are there to assign 1st, 2nd and 3rd. 	 There are 10 people in a race. How many different ways are there to assign 1st, 2nd and 3rd. 	 There are 100 people in a race. How many different ways are there to assign 1st, 2nd and 3rd.
Placement matters, use the formula		
$_{n}P_{r}=\frac{n!}{(n-r)!}$		
Fill out formula		
$_7 P_3 = \frac{7!}{(7-3)!} = \frac{7!}{4!} = 210$		
There are 7 to pick from and 3 are		
chosen.		
210	720	

Problem #9: Use your graphing calculator to evaluate $_{10}P_2 =$ Press 10 \rightarrow Math \rightarrow Prob $\rightarrow _nP_r \rightarrow$ enter \rightarrow 2 \rightarrow enter

Determine the answer.

40.	There are 20 songs on a CD. If only 4 songs can be played during class, how many different music sets are possible?	41.	There are 50 songs on a CD. If only 3 songs can be played during class, how many different music sets are possible?	42.	The top three prizes in a raffle are an Ipod, a cd player and movies tickets. How many ways can the prizes be awarded if 100 people buy tickets?
		!			

Problem #10: How would you represent the number just before n? (The answer is not m)

- What is the number just before (n+2)?
- What is the number just before (n-1)?

n-1,n+1,n-2

12

Problem #11: Evaluate $\frac{1000!}{998!}$.

Problem #12: What is bigger n or (n-2)? Simplify $\frac{n!}{(n-2)!}$.

Problem #13: $_{n}P_{2} = 110$ Determine the value of n using any method. Show your work.

Problem #14: $_{9}P_{n} = 72$ Determine the value of n using any method. Show your work.

different arrangements the coach has to choose from.

59. Find n. ${}_{9}P_n = 72$	60. Find n. $_7P_n = 42$	61. Find n. $_{10}P_n = 90$
$_{9}P_{n} = \frac{9!}{(9-n)!} = 72$		
$72 = \frac{9!}{(9-n)!}$		
Cross multiply		
$(9-n)!=\frac{9!}{72}$		
Reduce		
$(9-n)!=\frac{9\times8\times7!}{9\times8}$		
(9-n)!=7!		
so 9-n=7→n=2		
2		
62. A soccer coach has 10 players to cho decide 5 players to take penalty sho who will shoot 1 st ,2 nd ,3 nd , Determine	oose from. He must 63. A soccer coach ts and then decide the shoot out. the number of order of the 3	n must choose 3 out of 8 players to kick Assuming the coach must designate the players; determine the number of

different arrangements the coach has to choose from.

64.	The final score of a baseball game was 7-4. How many scores are possible after the 5 th inning?	65.	There are 3 boys and 3 girls. How many ways can they arrange themselves in a straight line if genders must alternate?	66.	A 6 question multiple choice test has options a, b, c, d and e. How many answers keys are possible?
67.	There are 50 songs on a CD. If only 3 songs can be played during class, how many different music sets are possible?	68.	How many different ice cream sundaes can be made from 6 choices of ice cream and 4 choices of topping, if only one flavor and one topping is selected for each sundae.	69.	The final score of a soccer game was 5-3. How many scores are possible after 20 minutes of play?

ł

Permutations Involving Identical Objects $\rightarrow \frac{n!}{a!b!c!...}$

Problem #15:

 How many unique 4-digit numbers can be created with the numbers 1,2,3,4? 							
1234	2134	3124	4123				
1243	2143	3142	4132				
1324	2314	3214	4213				
1342	2341	3241	4231				
1423	2413	3412	4312				
1432	2431	3421	4321				

4! = 24

• How many unique 4-digit numbers can be created with the numbers 1,1,3,4? Use a table to show the answer.

Formula→

How many duplicates are created by having two ones?

• How many unique 4-digit numbers can be created with the numbers 1,1,1,4? Use a table to show the answer.

Formula→

How many duplicates are created by having three ones?

• How many unique 4-digit numbers can be created with the numbers 1,1,1,1? Use a table to show the answer.

Formula→

How many duplicates are created by having four ones?

Permutations Involving Identical Objects $\rightarrow \frac{n!}{a!b!c!...}$

The number of permutations of n objects of which there are a objects alike of one kind, b alike of another kind, c alike of another kind, and so on is: $\frac{n!}{a!b!c!...}$

Problem #16: How many different permutations can be made from the letters MEYE?

How many different permutations can be made from the following letters?

70. MEYE	71. STUDAU	INTS	72. LLLUVVV	73. TH	EEEZ	74. NOOOOTCC
Solution: <u>4!</u> <u>1!2!1!</u> = 12 ₁₂		45360				
75. Given: A7 ques false test answ 5T and 2F. Hov different answe possible?	stion true er key has v many er keys are 21	76. G cl A m po	iven: 10 question mul noice. Answer key ha 's, 2B's, 2C's and 1D. any answer keys are ossible?	tiple- s 5 How	77. Given: 15 choice. A A's, 10B's many ans possible?	question multiple- inswer key has 3 s, 1C's and 1D. How wer keys are
78. Nine buttons di color only. 3 ar are red and 3 a How many diffe can they be arr vertically on a s	ffer by e green, 3 re orange. crent ways anged chirt?	79. H of ar	ow many unique arrange the number 12341234 e possible?	ements 8 1234	80. Ten butto only. 3 ar and 4 are different arranged	ns differ by color e green, 3 are red orange. How many ways can they be vertically on a shirt?

Combinations

Developing the concept of a Combination

Adam, Bryan, Colin & David will be running in a four person race. The following is a						
list of the possible race outcomes.						
A,B,C,D A,C,B,D B,A,C,D B,C,A,D C,A,B,D C,B,A,D	A,B,D,C A,D,B,C B,A,D,C B,D,A,C D,A,B,C D,B,A,C		А,С,Д,В А,Д,С,В С,А,Д,В С,Д,А,В Д,А,С,В Д,С,А,В	5 5 5 5 5	B,C,D,A B,D,C,A C,B,D,A C,D,B,A D,B,C,A D,C,B,A	
81. In a four person many ways can 1 ^s 3 rd place be away	race, how st , 2 nd and rded?	ow 82. Adam, Bryan, Colin & David just found out that the top ad 3 finishers will make the national team. How many different national teams can be formed?				
This is a permutation runners taken 3 at a t ${}_4P_3 = \frac{4!}{(4-3)!} = \frac{4!}{1!}$ ${}_4P_3 = 4 \times 3 \times 2 = 24$ The solution is all the arrangements above!	of 4 ime.	Since the top 3 runners make the national team, the focus is not so much in winning the race as it is in being one of the top 3. Therefore A,B,C,D & A,C,B,D will create the same Olympic team. <i>Placement in the top 3 does not matter.</i> We can solve this question by thinking about the race in terms of how many will Qualify and how many will be Cut. We will not think of them in terms of 1 st ,2 nd ,3 rd &4 th but rather Q,Q,Q,C.				
Does placement matter? YES Remember identical permutation Each column above represents a Does placement matter			ons→ $\frac{4!}{3!1!}$ a single so ter to f	= 4 olution. First 3 runners?		
Permutat $_{n}P_{r} = \frac{n!}{(n-r)}$	Tion	$_{n}C_{r}=\frac{1}{r!}$	$\frac{n!}{(n-r)!} \rightarrow$	$p_{4}C_{3} = \frac{1}{2}$	$\frac{4!}{3!(4-3)!} = \frac{4!}{3!1!} = 4$	

PERMUTATION VERSES COMBINATION

Problem #17: A bowling team is made up of 10 kids. How many different groups of 4 can be sent to the city championships?

State what kind of question it is, permutation or combination and then find the answer.

83. A bowling team is made up of 10 kids. How many different groups of 4 can be sent to the city championships? (P or C) Solution ${}_{10}C_4 = \frac{10!}{4!6!}$	84. A golf team is made up of 8 kids. How many different groups of 3 can be sent to the provincial championships? (P or C)	85. How many ways can a president, vice president and a twit be selected from the 30 students? (P or C)
86. How many ways can 1 st , 2 nd and 3 rd , be awarded to the 10 bowlers? (P or C)	87. How many ways can 1 st , 2 nd and 3 rd , be awarded to the 8 golfers? (P or C)	88. A class is made up of 30 kids. How many different committees of 3 can be formed? (P or C)

Problem #18: A bowling team is made up of 6 boys and 4 girls. How many different groups of 4 can be sent to the city championships if 2 boys and 2 girls have to go?

90

Problem #19: There are 5 boys and 6 girls in a class. How many ways can you select a king, a queen and a twit?

270

Solve the following problems and state whether it is a permutation or combination.

A bowling team is made up of 6	A golf team is made up of 5	A class is made up of 10 boys		
boys and 4 girls.	boys and 3 girls.	and 20 girls.		
89. How many different groups of 4 can be sent to the city championships if 2 boys and 2 girls have to go? (P or C)	90. How many different groups of 3 can be sent to the provincial championships if 2 boys and 1 girl have to go? (P or C)	91. How many committees of 3 can be formed if 1 boy and 2 girls have to be elected? (P or C)		
Solution:				
$_{6}C_{2} = 15$ different pairs of boys	, , , ,			
Choose 2 girls from $4 \rightarrow$				
${}_{4}C_{2}^{}=6$ different pairs of girls				
Multiply the results				
$_{6}C_{2} \times _{4}C_{2} = 15 \times 6 =$				
90				

92. There are 5 boys and 6 girls in a class. How many ways can you select a king, a queen and a twit? Solution: Choose 1 king from 5 boys $\rightarrow {}_5C_1$ Choose 1 queen from 6 girls $\rightarrow {}_6C_1$ Choose 1 twit from those not picked $\rightarrow {}_9C_1$ Multiply results ${}_5C_1 \times {}_6C_1 \times {}_9C_1 =$ 270	93. T ci si a	There are 7 boys and 3 girls in a lass. How many ways can you elect best guy hair, best girl hair nd worst hair day?	94.	A deck of cards has 52 cards. How many different 5 card hands can be made up of exactly 2 kings, exactly 2 queens and 1 other card?
95. A deck of cards has 52 cards. How many different 5 card hands can be made up of exactly 1 king, exactly 2 queens and 2 other cards?	96. A H cı sı	A deck of cards has 52 cards. How many different 5 card hands an be made up of exactly 2 pades, exactly 1 heart and 2 ther cards?	97.	A deck of cards has 52 cards. How many different 5 card hands can be made up of exactly 3 face cards, exactly 1 ace and 1 other card?

Problem #20: A committee is to be made up of 5 people.

- What are the possible compositions if there must be at least 4 boys?
- What are the possible compositions if there must be at most 2 girls?

Problem #21: A 5 person committee has been organized to deal with overhead pen recycling. 7 boys and 10 girls have expressed interest. How many committees are possible if there must be at least 4 girls?

Solving Combination problems with the words exactly, at least and at most. A committee of five will be chosen from 10 boys and 8 girls.

98. What are the possible gender compositions if the committee must have exactly 4 girls?	99. What are the possible gender compositions if the committee must have at least 4 girls?	100. What are the possible gender compositions if the committee must have at most 2 girls?
	See 101 for help	See 104 for help

A 5 person committee has been organized to deal with overhead pen recycling. 7 boys and 10 girls have expressed interest.

101. How many committees are possible if there must be at least 4 girls?	102. How many committees are possible if there must be at least 3 guys?	103. How many committees are possible if there must be at least 2 girls?
At least 4 girls means:		
1 boy, 4 girls \rightarrow $_7C_1 \times_{10}C_4 =$		
0 boys, 5 girls \rightarrow $_7C_0 \times_{10}C_5 =$ Add the two rows		
1722		

A 5 person committee has been organized to deal with overhead pen recycling. 7 boys and 10 girls have expressed interest.

104. How many committees are possible if there must be at most 2 guys?	105. How many committees are possible if there must be at most 2 girls?	106. How many committees are possible if there must be at most 3 guys?
At most 2 guys means 0,1,2		
$0b,5g \rightarrow {}_7C_0 \times_{10}C_5 =$		
$2b, 3g \rightarrow {}_7C_2 \times {}_{10}C_3 =$		
Add the three rows		
4242		

107. A warehouse contains 8	108. A warehouse contains 6	109. A warehouse contains 5
different cars, 4 different	different cars, 5 different	different cars, 5 different
SUVs and 3 trucks. If you	SUVs and 4 trucks. How	SUVs and 2 trucks. If you
were allowed to take any 4 you	many possibilities are there	are allowed to take any 2
wanted, how many different	if exactly 2 of your 4	vehicles, how many different
possibilities are there?	choices have to be cars?	possibilities are there?
110. A warehouse contains 8	111. A warehouse contains 6	112. A warehouse contains 5
different cars, 4 different	different cars, 5 different	different cars, 5 different
SUVs and 3 trucks. How	SUVs and 4 trucks. If you	SUVs and 2 trucks. How
many possibilities are there	are allowed to take any four	many possibilities are there
if exactly one of your 4	vehicles, how many different	if both of your choices
choices has to be a truck?	possibilities are there?	have to be SUVs?

Problem #22: ${}_{n}C_{2} = 55$ Find n.

113. ${}_{n}C_{2} = 55$ Find n. 114. ${}_{n}C_{2} = 10$ Find n. 115. ${}_{n}C_{2} = 28$ Find n. Solution: $_{n}C_{2} = \frac{n!}{2!(n-2)!} = 55$ Rearrange $\frac{n(n-1)(n-2)!}{2!(n-2)!} = 55$ Reduce $\frac{n(n-1)}{2!}=55$ n(n-1) = 110 $n^2 - n - 110 = 0$ Solve by factoring→11,(reject -10) 11 Write an expression for n. $117. \ _{n-1}C_2 =$ 118. $_{n+1}C_2 =$ 116. ${}_{n}C_{2} =$ 119. $\frac{n+3}{n+3}C_3 =$

Problem #23: How many unique 5 card hands can be dealt from a deck of 52 cards?

Problem #24: How many unique 5 card hands can be dealt from a deck of 52 cards if there needs to be exactly 1 five, 1 seven and 3 other cards?

Color	Suit		Non-Face Cards						Fa	ice Car	ds			
Red	Hearts	Α	2	3	4	5	6	7	3	4	10	J	Q	К
Red	Diamonds	Α	2	3	4	5	6	7	3	4	10	J	Q	К
Black	Clubs	Α	2	3	4	5	6	7	3	4	10	J	Q	К
Black	Spades	Α	2	3	4	5	6	7	3	4	10	J	Q	К

Find the number of 5 card hands made up of:	Formula	Number
Any cards		120.
Spades only		121.
Hearts only		122.
Red cards only		123.
2 spades, 3 hearts		124.
3 red, 2 black		125.
2 red,2 spades, 1 club		126.
2 fours, 3 fives		127.
4 kings, 1 ace		128.
1 five, 1 seven, 3 other car	$ds \rightarrow {}_{4}C_{1}x_{4}C_{1}x_{44}C_{3}$	129.

4 "5"s \rightarrow choose 1, 4 "7"s \rightarrow choose 1, 44 cards that are not 5 or 7 choose 3

Problem #25: Billy wants to tip a waitress at Moxies. He has five denominations, a nickel, a dime, a quarter, a loonie & a toonie. Assuming he tips, how many different tip amounts are possible if he leaves at least one denomination.

See 136 for help! Don't look to soon!

130. Exactly 2 fours.	131. Exactly 3 face cards.	132. Exactly 3 red cards.						
		1 1 1 1						
133. At least 2 fours.	134. At least 3 red cards.	135. At most 3 red cards.						
	1 1 1 1							

From a deck of 52 cards, how many different 5 card hands can be formed in each case?

Billy wants to tip a waitress at Moxies. He has five denominations, \$1, \$2, \$5, \$10& \$20. Assuming he tips, how many different tip amounts are possible if:

136. 1,2,3,4 or 5 denominations are left?	137. 1,2 or 3 denominations are left?	138. 4 or 5 denominations are left?
Solution		
Another way of saying this would		
be, he leaves at least 1 bill.		
1→5 choose 1→ $_5C_1$ =5		
2→5 choose 2→ $_5C_2$ =10		
3→5 choose 3→ ₅ C ₃ =10		
4→5 choose 4→ ₅ C ₄ =5		
5→5 choose 5→ ₅ C ₅ =1		
31		

Pascal's Triangle

Determine the pattern. Fill out the first 9 rows of Pascal's triangle.

There are many patterns in this triangle. Name at least 7.

What generalizations could we make about this triangle?

139. The number of terms in each row is equal to:

.

	1
140. The outer boxes are always equal to:	
141. The left half of the triangle is equal to:	
142. Not including row 1, each box is the sum of:	

Compare Pascal's triangle with the coefficients in the binomial expansions							
1	Row 1	(x+y) ⁰	1				
	Row 2	(x+y) ¹	1×+1y				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	Row 4	(x+y) ³	1x ³ +3x ² y+3xy ² +1y ³				
1 4 6 4 1 Row 5 $(x+y)^4$ $1x^4+4x^3y+6x^2y^2+4xy^3+1y^4$							
1 5 10 10 5 1	Row 6	(x+y) ⁵	1x ⁵ +5x ⁴ y+10x ³ y ² +10x ² y ³ +5xy ⁴ +1y ⁵				

Use your calculator to fill out the ${}_{n}C_{r}$.

*Find an equivalent ${}_{n}C_{r}$. The symmetric pattern.

143. 6 C 2=	144. 17 C 8=	145. 100 C 81=	146. n C 10=	147. n+10 C 10=	148. ab C c=
	1 1 1				

*Find the ${}_{n}C_{r}$ that is the sum of the following. This is the recursive pattern.

$_{149.}$ $_{5}C_{1} + _{5}C_{2}$	150. 44C19 + 44C20	151. _{a-1} C _{b-1} + _{a-1} C _b	152. ${}_{a}C_{b} + {}_{a}C_{b+1}$	
153. a+6Cb+1 + a+6Cb+2	^{154.} 2a+1Cb-5 + 2a+1Cb-4	155. a-xCby-1+a-xCby	156. Iluv-1Cmath12-1 + Iluv-1Cmath12	

Find nCr that satisfies the following.

157. 6 th row,	158. 61 st row,	159. 8 th row,	160. 101 st row,	161. A th row,	162. (d+3) th row,
4 th position	1 st position	2 nd position	99 th position	5 th position	d th position
				1 ⁻ 1 1	
		1 1 1	1 1 1	1 1 1	1 1 1

*Best way to solve these is to draw the first few rows and then generalize. (Easier when you can see it)

Problem #26: Draw a square. Place an a and a b at opposite corners. How many ways are there to get from a to b?

Problem #27: There are two question here. Draw a two by two grid and a 1 by 4 grid. Place an a and a b at opposite corners of each grid. How many ways are there to get from a to b in each grid?

Problem #28: Draw a two by three grid. Place an a and a b at opposite corners. How many ways are there to get from a to b?

Describe two ways of solving the above problems.

Moving only right and downward, determine the number of pathways from the number to the letter.

Copyright Mathbeacon2008-2013. License Agreement Per student/Per Year: This content may be used before but not after July 2014. 30

Moving only right and downward, determine the number of pathways from the number to the letter.

Problem #29: Start inside the box at the number. Move diagonally downward staying inside the boxes, like you would in the game checkers. Determine the number of pathways from the number to the bottom row.

Start inside the box at the number. Move diagonally downward staying inside the boxes, like you would in the game checkers. Determine the number of pathways from the number to the bottom row.

The Binomial Theorem

Problem #30: Expand (x+y)°.

Problem #31: Expand (x+y)¹.

Problem #32: Expand (x+y)².

Problem #33: Expand (x+y)³.

Problem #34: Expand (x+y)⁴.

Connecting the binomial theorem to Pascal's Triangle.

Compare Pascal's triangle with the coefficients in the binomial expansions.										
			1	,				Row 1	(x+y) ⁰	1
			1	1				Row 2	(x+y) ¹	1×+1y
	Γ	1	2	2 1	l			Row 3	(x+y) ²	1x ² +2xy+1y ²
	1		3	3	1			Row 4	(x+y) ³	1× ³ +3× ² y+3×y ² +1y ³
	1	4	6	, 4	1	1		Row 5	(x+y) ⁴	1x ⁴ +4x ³ y+6x ² y ² +4xy ³ +1y ⁴
1	5	1	0	10	5	1		Row 6	(x+y) ⁵	1x ⁵ +5x ⁴ y+10x ³ y ² +10x ² y ³ +5xy ⁴ +1y ⁵

Answer the following:

180. Does row 3 have a middle term?	
181. Which rows have a middle term?	
182. Does (x+y) ⁵ have a middle term?	
183. What do you know about A if (x+y) ^A has a middle term?	
184. How many terms does (x+y) ⁵ have?	
185. How many terms does (x+y) ⁵⁰⁰ have?	
186. How many terms does (x+y) ^A have?	
187. How many terms does the 4 th row have?	
188. How many terms does the 4000 th row have?	
189. How many terms does the N th row have?	

How do the x and y exponents change in each term of the binomial expansions?

Row	Binomial	Binomial expansion	X exponents	Y exponents
Row 5	(x+y) ⁴	1X ⁴ + 4 x ³ y+ 6 x ² y ² + 4 xy ³ +1y ⁴	190.	191.
Row 6	(x+y)⁵	1X ⁵ +5x ⁴ y+10x ³ y ² +10x ² y ³ +5xy ⁴ +1y ⁵	192.	193.

Compare ${}_{n}C_{r}$ in each row with the coefficients in the binomial expansions.									
		0	Co				Row 1	(x+y) ⁰	1
		₁ C ₀	₁ C ₁				Row2	(x+y) ¹	1×+1y
	20	C _{0 2}	C _{1 2}	C ₂			Row3	(x+y) ²	1x ² +2xy+1y ²
	₃ C ₀	₃ C ₁	₃ C ₂	₃ C ₃			Row4	(x+y) ³	1× ³ +3× ² y+3×y ² +1y ³
40	C ₀ 4	C ₁ 40	C ₂ 4	C ₃ 4	C4		Row5	(x+y) ⁴	1x ⁴ +4x ³ y+6x ² y ² +4xy ³ +1y ⁴
₅ C ₀	₅ C ₁	5 C 2	₅ C ₃	₅ C ₄	₅ C ₅		Row6	(x+y) ⁵	1x ⁵ +5x ⁴ y+10x ³ y ² +10x ² y ³ +5xy ⁴ +1y ⁵

Observation #1: Study Pascal's triangle again. What does the r value in ${}_{n}C_{r}$ correspond to: the x-exponent or the y-exponent?

Observation #2: In the expansion of $(x+y)^4$ what do the exponents add to in every term?

Observation #3: In the expansion of $(x+y)^5$ what do the exponents add to in every term?

Observation #4: In the expansions above what happens to the x-exponents as we read left to right?

Observation #5: In the expansions above what happens to the y-exponents as we read left to right?

Observation #6: What does ${}_{n}C_{r}$ help us find in each term of the above binomial expansions?

Problem #35: Expand $(X + Y)^6$ using what you have learned from Pascal's triangle.

- Find the coefficients of each term.
- Find the combinations of x and y for each term.

Expand $(X + Y)^{6}$ using the Binomial Theorem

194. How many terms will there be?

- The coefficient of each term can be found using ${}_6C_{\underline{0}} \rightarrow {}_6C_{\underline{6}}$
- X exponents start at 6 and decrease by 1 until it reaches 0
- Y exponents start at $\underline{0}$ and increase by 1 until it reaches $\underline{6}$
- Each term is the product of the above: $\ _{n}\mathcal{C}_{r}x^{n\text{-}r}y^{r}$

Ter	rm 1	Ter	'm 2	Term 3		Term 4		Term 5		Term 6		Term 7	
₆ C ₀	= 1	₆ C ₁	= 6	₆ C ₂	= 15	₆ C ₃	= 20	₆ C ₄	= 15	₆ C ₅	= 6	₆ C ₆	= 1
X ⁶	= X ⁶	X ⁵	= X ⁵	X ⁴	= X ⁴	X ³	= X ³	X ²	= X ²	X ¹	= X ¹	Xo	= 1
γo	= 1	У1	= Y	У²	= Y ²	У³	= Y ³	У ⁴	= Y ⁴	У ⁵	= Υ ⁵	У ⁶	= Y ⁶
×	(⁶	+ 6	X⁵Y	+ 15	X ⁴ Y ²	+ 20	$X^3 Y^3$	+ 15	X ² Y ⁴	+ 6	Х У ⁵	+	У ⁶
	$(X+Y)^6 = X^6 + 6X^5Y + 15X^4Y^2 + 20X^3Y^3 + 15X^2Y^4 + 6XY^5 + Y^6$												

195. Expo	and (m – 2	e) ⁴ using	the binor	nial theo	rem. (Pay a	attention to t	he (-2))		
Ter	rm 1	Ter	m 2	Ter	m 3	Ter	m 4		
						1 1 1 1 1		1 1 1 1 1	
			,			1 1 1 1 1 1		1 1 1 1 1 1	
		/		/		J		m ⁴ -8m ³ +24	m²-32m+16
196. Expo	and (2 <i>m</i> –	1) ⁴ using	the bino	mial theo	orem.				
		 	 	 		1 1 1 1 1 1		1 1 1 1 1 1	
		 				< 		 	
 		'		'		!		4 4 9 9 3	

197. Expand (2 <i>m</i> - 3)	$)^4$ using the	e binomial	theorem.			,	
				 		, , , , ,	
)5						
198. Expand $\left(m-\frac{1}{2}\right)$	using the	e binomial	theorem.				
					5 5 4	5 3 5 2	5 1
100 Funeral (m. 2)5		h:			$m = -m + \frac{1}{2}$	$\frac{m}{2} = \frac{m}{4}$	$+\frac{16}{16}m-\frac{1}{32}m$
199. Expand (m – 2)	using the	dinomiai t	neorem.				
200. Expand (3m - 1)	5 using the	binomial	theorem.				

201. Find the first	201. Find the first 4 terms of the binomial expansion $(m-1)^{15}$.							
		·				·		
· · · · · · · · · · · · · · · · · · ·		·			·			
					·			
	i		i		i			
202. Find the first	4 terms of t	he binomial ex	kpansion (m –	-2) ⁸ .				
203. Find the last 3	B terms of th	e binomial exp	bansion $\left(\frac{1}{2}m\right)$	-2) ⁹ .				
			(2)				
204. Find the last 3	3 terms of th	e binomial exp	pansion (2 <i>m</i> -	- <i>n</i>) ¹⁰ . OMIT	(Extra prac	tice only		

Problem #36: Find the 5^{th} term of the binomial expansion (X-Y)¹⁰.

	The Binomial Expansion formula							
	Term 1	Term 2	Te	rm 3		Term (k+1)		Term (n+1)
(X+Y) ⁿ =	${}_{n}C_{O}X^{n}Y^{O}+$	${}_{n}C_{1}X^{n-1}Y+$	${}_{n}C_{2}X^{n}$	-²γ²+	+	${}_{n}C_{k}X^{n-k}Y^{k} +$	+	${}_{n}C_{n}X^{0}Y^{n}$
(X+Y) ⁶ =	₆ C ₀ X ⁶ +	₆ С ₁ Х ⁵ У+	₆ C ₂ X ²	⁴ γ ² +	+	+	+	₆ C ₆ Y ⁶
Find the	e (K+1) th ter	$\mathbf{rm} \ t_{k+1} = {}_{n} C_{k} X$	^{, n-k} Y ^k	Find	the k	t^{th} term $t_k = n$	$C_{k-1}X$	$n^{-(k-1)}y^{k-1}$
This formul	a is given on th	e provincial exc	ım	This formula is not given on the provincial exam				

^{205.} Find the 5^{th} term of the binomial expansion (X-Y)¹⁰.

By formula	By hand
$t_{k+1} =_n C_k X^{n-k} Y^k$	$Term1 \rightarrow Term2 \rightarrow Term3 \rightarrow Term4 \rightarrow Term5$ ${}_{10}C_0 \rightarrow {}_{10}C_1 \rightarrow {}_{10}C_2 \rightarrow {}_{10}C_3 \rightarrow {}_{10}C_{\underline{4}}$
Remember $t_5 = t_{4+1}$ so $t_5 = C X^{10-4} (-Y)^4$	Remember that the 4 is the y exponent ${}_{10}C_4$ X^{10-4} Y^4
$t_{4+1} = {}_{10}C_4 X^6 Y^4$ $t_{4+1} = 210 X^6 Y^4$	₁₀ C ₄ X ⁶ Y ⁴ =210 X ⁶ Y ⁴

 $_{\rm 206.}$ Find the 8 $^{\rm th}$ term of the binomial expansion (X-Y) $^{\rm 10}$

By formula	By hand
$t_{k+1} =_n C_k X^{n-k} Y^k$	Term8←Term9←Term10←Term11 ←Start
Remember $t_8^{}=t_{7+1}^{}$ so	10C7←10C8←10C9←10C10←Start
$t_{7+1} = {}_{10}C_7 X^{10-7} (-Y)^7$	Remember that the 7 is the y exponent
$t_{7+1} = -{}_{10}C_7 X^3 Y^7$	$_{10}C_7$ X ³ (-Y) ⁷
$t_{7+1} = -210X^3Y^7$	₁₀ C ₇ X ³ (-Y) ⁷ =-120X ³ Y ⁷

Find the following term of the binomial expansion.

207. $(m-2)^8$ Find the 3 rd term.	208. $(2m - n)^{10}$ Find the 9 th term.	209. $(m-1)^{15}$ Find the 12 th term.
112m ⁶		

Last Update: July 2013

	Term 1	Term 2	Term 3	Term (k+1)		Term (n+1)
(X+Y) ⁿ =	${}_{n}C_{0}X^{n}Y^{0}+$	${}_{n}C_{1}X^{n-1}Y+$	${}_{n}C_{2}X^{n-2}Y^{2}+$	$\dots + {}_{n}C_{k}X^{n-k}Y^{k} +$	+	${}_{n}C_{n}X^{0}Y^{n}$
(X+Y) ⁶ =	₆ C ₀ X ⁶ +	₆ С ₁ Х ⁵ У+	${}_{6}C_{2}X^{4}Y^{2}+$	+ ${}_{6}C_{4}X^{2}Y^{4}$ +	+	₆ C ₆ Y ⁶

Find the middle term of the binomial expansion.

210. Find the middle term of the binomial expansion, (m – 2) ⁸ .	 211. Find the middle term of the binomial expansion, (2m - n)¹⁰. 	212. Find the middle term of the binomial expansion, $(m-1)^{16}$.
1120m⁴,term 5 is the middle term		

Given a term from a binomial expansion, determine the following:

213. What term in the	215. What term in the	217. What term in the	219. What term in the
expansion would	expansion would	expansion would	expansion would
15X ⁴ Y ² be?	36X ⁵ Y ⁶ be?	40X ²⁰ Y ⁴ be?	40X ⁵⁰ Y ⁴ be?
214. How many terms	216. How many terms	218. How many terms	220. How many terms
would there be?	would there be?	would there be?	would there be?
221. How many terms would there be in a binomial expansion if 200X ⁵ Y ^a is a term?	222. What term in the expansion would 36XªY ^b be?	223. How many terms would there be in a binomial expansion if 40X ^{a-1} Y ^{b+1} is a term?	224. What term in the expansion would 40X ^{a+1} Y ^{b-2} be?

Problem #37: In the expansion $(3A-1)^{5}$, determine the coefficient of the term containing A^{2} .

225. In the expansion (3A-1) ^{5,} determine the coefficient of the term containing A ² .	226. In the expansion (2A-3) ^{8,} determine the coefficient of the term containing A ⁶ .	227. In the expansion (3A-1) ^{13,} determine the coefficient of the term containing A ² .
Remember		
${}_{5}C_{3}(3A)^{2}(-1)^{3}$		
=10(9A ²)(-1)	, , , ,	
=-90A ²		
The coefficient=-90		
228. Find X if XA^5B^3 is one of the	229. Find X if XA^5B is one of the	230. Find X if XA^3 is one of the
terms of the expansion	terms of the expansion	terms of the expansion
$(A+B)^{8}$.	(A+B) ⁶ .	(3A-1) ⁵ .
	, , , ,	
	I Contraction of the second	1

Review of Pascal's Triangle and the Binomial Theorem

231. What term in the expansion would 200X ²⁰ Y ³⁰ be?	232. Does (A+B) ¹²⁰ have a middle term?	^{233.} Find _n C _r for position 7 in the 13 th row of Pascal's triangle.
234. Does row 7 of Pascal's triangle have a middle term?	^{235.} What term in the expansion would 230X ¹¹ Y ³⁹ be?	236. How many terms does the 39 th row of Pascal's triangle have?
237. ₄₉ C ₉ + ₄₉ C ₁₀ =	^{238.} How many terms does (A+B) ¹¹	239. Which $_{n}C_{r}$ is equivalent to $_{60}C_{1}$?
^{240.} How many terms does (A+B) ⁸	241. Does (A+B) ⁶⁷ have a middle term?	242. Does row 14 of Pascal's triangle have a middle term?
243. How many terms does the 90 th row of Pascal's triangle have?	244. What term in the expansion would 23X ²¹ Y ³ be?	245. Find "C _r for position 4 in the 71 st row of Pascal's triangle.
246. omit	247. omit	248. omit

Copyright Mathbeacon2008-2013. License Agreement Per student/Per Year: This content may be used before but not after July 2014. 41

Unit Review Questions.		
249. There are 10 different books. How many different ways can 4 books be placed on a shelf?	250. A true false test has 5 questions. How many different answer keys are possible?	251. Given: 10 question True False test Answer key has 3T and 7F. How many different answer keys are possible?
252. The Final Score in a Baseball game was 7-3. How many possible 5 inning scores are there?	253. Given: 10 question multiple-choice. Answer key has 4 A's, 3B's, 2C's and 1D. How many answer keys are possible?	254. There are 10 different balls. How many different ways can you select 4 balls and put them in a backpack?
255. There are 7 people in a race. How many different ways are there to assign 1 st , 2 nd and 3 rd .	256. How many 4 question exams can be formed by a test bank containing 10 different questions?	257. You have 9 red cards and 6 black cards. You have to discard 11 cards. How many 4-card hands are possible if you keep 2 red, 2 black?

Answers					
1. 12	2. 24	3. 90	4. 45	5. 81	
6. 900	7. 450	8. 648	9. 75	10. 200	
11. 260	12. 8	13. 0.125	14. 32	15. 0.03125	
16. 256	17. 0.39%	18. 1024	19. 0.0977%	20. 9765625	
21. 0.0000102%	22. 15	23. 21	24. 12	25. 720	
26. 24	27. 6	28. 120	29. 5040	30. 40320	
31. 362880	32. 720	33. 240	34. 7257600	35. 12	
36. 210	37. 210	38. 720	39. 970200	40. 116280	
41. 117600	42. 970200	43. 72	44. 117600	45. 9900	
46. n ³ -3n ² +2n	47. n+1	48. 110	49. 504	50. 999000	
51. 10200	52. n ² -n	53. n ² +3n+2	54. n²-2n	55. $\frac{1}{4}$ (n ² -3n+2)	
56. 11	57. 5	58. 8	59. 2	60. 2	
61. 2	62. 30240	63. 336	64. 40	65. 72	
66. 15625	67. 117600	68. 24	69. 24	70. 12	
71. 45360	72. 140	73. 120	74. 840	75. 21	
76. 7560	77. 60060	78. 1680	79. 369600	80. 4200	
81. 24	82. 4	83. 210,c	84. 56,c	85. 24360,p	
86. 720,p	87. 336,p	88. 4060,c	89. 90	90. 30	
91. 1900	92. 270	93. 168	94. 1584	95. 22704	
96. 329550	97. 31680	98. 700	99. 756	100. 5292	
101. 1722	102. 1946	103. 5817	104. 4242	105. 1946	
106. 5817	107. 1365	108. 540	109.66	110. 660	
111. 1365	112. 10	113. 11	114. 5	115. 8	
116. $\frac{1}{2}(n^2 - n)$	117. $\frac{1}{2}(n^2 - 3n + 2)$	118. $\frac{1}{2}(n^2 + n)$	119. $\frac{1}{6}(n^2+3n+2)$	120. 2598960	
121. 1287	122. 1287	123. 65780	124. 22308	125. 845000	
126. 329550	127. 24	128. 4	129. 211904	130. 103776	
131. 171600	132. 845000	133. 108336	134. 1299480	135. 2144480	
136. 31	137. 25	138. 6	139. The row number	140. 1	
141. The right half	142. The boxes above that touch it	143. ₆ C ₄	144. ₁₇ C ₉	145. ₁₀₀ C ₁₉	
146. nCn-10	147. _{n+10} C _n	148. _{ab} C _{ab-c}	149. ₆ C ₂	150. ₄₅ C ₂₀	
151. _a C _b	152. _{a+1} C _{b+1}	153. a+7 c_{b+2}	154. 2a+2Cb-4	155. a-x+1Cby	
156. IluvCmath12	157. ₅ C ₃	158. ₆₀ C ₀	159. ₇ C ₁	160. ₁₀₀ C ₉₈	
161. _{A-1} C ₄	162. _{d+2} C _{d-1}	163. 126	164. 81	165. 60	
166. 46	167. 60	168. 30	169. 59	170. 82	
171. 90	172.6	173.16	174. 20	175. 5	
176. 8	177. 5	178. 3	179.1	180. yes	
181. Odd rows	182. no	183. Even exponents	184. 6	185. 501	

Copyright Mathbeacon2008-2013. License Agreement Per student/Per Year: This content may be used before but not after July 2014. 43

186. A+1	_{187.} 4	188. 4000		189. N		190. Down by 1	
191. Up by 1	192. Down by 1	193. up by 1 194. 7		194. 7		195. m ⁴ -8m ³ +24 m ² -32m+16	
196. 16m ⁴ -32m ³ +24	m ² -8m+1	3m+1 197. 16m ⁴ -96m ³ +216 m ² -216m+81 198. answered on page		n page			
199. m ⁵ -10m ⁴ +40m ³ -	199. m^5 -10 m^4 +40 m^3 -80 m^2 +80 m -32200. 243 m^5 - 405 m^4 + 270 m^3 - 90 m^2 + 15 m^1 -1200. 243 m^5 - 405 m^4 + 270 m^3 - 90 m^2 + 15 m^2		201. m ¹⁵ - 15m ¹⁴ + 105m ¹³ - 455m ¹²				
202. m ⁸ - 16m ⁷ + 112	m ⁶ - 448m⁵	2031152m ² , 1152m , -512		204. 180m ² n ⁸ , -20mn ⁹ , n ¹⁰			
205. 10C ₄ X ⁶ Y ⁴		206. ₁₀ C ₇ X ³ (-Y) ⁷			207.112m ⁶		
208. 180m ² n ⁸		_{209.} -1365m ⁴			210. 1120m ⁴ ,ter	n 5 is the middle term	
2118064m⁵n⁵,terr term	n 6 is the middle	212. 12870m ⁸ , term9 is the middle term		213. 3			
214. 7	215. 7	216. 12	217. 5		218. 25	219. 5	
220.55	221. a+6	222.b+1	223. a+b+1		224.b-1	22590	
226.16128	227702	228.56	229.6		230.270	231. 31	
232. yes	233. ₁₂ C ₆	234.yes	235.40		236.39	237. 50C10	
238.12	239. 60C59	240.9	241. no		242. no	243.90	
244.4	245. ₇₀ C ₃	246. ₈₀ C ₇₄	247. no		248.25	249.5040	
250.32	251. 120	252.32	253.12600		254.210	255.210	
256.210	257.540	258.3628800	259.		260.	261.	